Categories
Process Control

Possibly Apocryphal

I’m Jason Firth.

A quote attributed to Mark Twain goes “History never repeats itself but it rhymes”.

I started my career going to college as an instrumentation engineering technologist. Over 20 years before that, my father was going to trade school as an instrument mechanic just a couple hundred kilometers away in Brandon.

Instrumentation is a fast moving trade: New computer control products are constantly coming out, there’s new technologies, new devices, new trains of thought, and tomes filled with the new ideas in control that come out every month. However, a lot of the fundamentals stay the same. A lot of the curriculum we both learned could be taught in either classroom. Pneumatics, electronics, fluid mechanics, op-amps, PID controllers, final control elements.

There’s one story in particular that both of us were taught, 20 years apart. It’s a story about why you should have qualified people working as instrument techs.

I’ll start with the process, and move on from there.

The Kraft paper making process starts with wood chips, which are then placed in a “digester”. A powerful caustic called “white liquor” is added to the digester, and the whole unit is heated and put under pressure. The white liquor dissolves the stuff keeping the wood fibres bound together, and once the digesting process is complete, you’ve got a combination of wood pulp, and spent white liquor, which is called “black liquor”, because it becomes filled with all the sugars and lignates and such from the wood. From the digesters, the result is placed on a giant drum called a washer, and the black liquor is washed out of the fiber, which then heads off to your paper machine or pulp machine or whatever you’re going to use the fiber for. The black liquor then pumped to the recovery process.

The recovery process takes that black liquor and “recovers” it into white liquor. The first step is that the black liquor is pumped into a giant boiler (we’re talking 8-10 stories tall, with a cross-section of a small house), called a “Recovery boiler”, where it burns. The sugars and lignates from the wood burn, producing heat. Once the liquor is burned, it drops into a chamber below the boiler, at which point it is now “green liquor”. From there, it gets sent to the recausticizing plant, where it is clarified and strengthened, and it becomes white liquor once again.

Recovery boilers are huge, as we’ve established, and they’re also quite high pressure. Plants I’ve worked at had steam of 800psi, but I’ve heard of plants as high as 1500psi. Besides producing enough steam to run the process, there is often enough steam left over to run a turbogenerator to offset the huge amount of electricity involved in the paper making process. I’ve seen turbogenerators of 20MW, but 100MW or more of electricity generating capacity is definitely out there. That’s enough energy to power a small city. When paper prices collapsed, some plants remained operational only from profits made by selling electricity back to the grid!

So you have these boilers that are dangerous by themselves simply by virtue of being massive pressure vessels containing enough energy to power a small city, but recovery boilers have an additional danger: The caustic which drops into the chamber below the boiler is called “slag”, and it reacts violently with water. Getting water into your recovery boiler is a great way to not have a recovery boiler any longer.

So finally, on with the story. Fort Frances is a town in northwestern Ontario, which for a long time had a pulp & paper mill. In recent years the mill has come on hard times, but before that it was in operation for decades.

The story goes, that on two separate occasions, they literally blew up their recovery boiler, because they weren’t using qualified people to handle their instrumentation and controls.

The first story goes like this: The union plant allowed someone from operations to work as an instrument technician without going through an apprenticeship first. One day, they installed a fail open control valve on the fuel line into the boiler. The first time the valve lost air pressure, the fuel valve opened 100%. The huge excess of fuel caused a boiler explosion. Fail safety is one of the fundamentals of instrumentation, so any qualified instrument tech should have caught the problem before it became a problem.

The second story goes like this: Apparently not learning from their first episode, the plant allowed someone who wasn’t qualified as an instrument technician to work as one. One day, the boiler was running dry to do some testing. This is an extremely unusual situation, and generally it isn’t something you’d ever do, because you can damage the boiler. No tag out was employed to explain that the boiler was being run dry intentionally, so when an operator noticed the low boiler water level, they panicked and started adding water. When you add cold water to a superheated empty boiler, the water immediately boils, turning to steam. The shock can cause an explosion. They ended up blowing up their boiler again. Lock out and Tag out are another one of the fundamentals of instrumentation, so any qualified instrument tech should have tagged the controller, preventing the problem.

In the age of the Internet, I haven’t been able to find any articles supporting the idea that either of these things happened. However, 20 years apart, at two different colleges, in two different programs, the same stories were told about the same mill in Northern Ontario, in both cases a cautionary tale of using unqualified instrument techs.

Thanks for reading!

Categories
Trades

The Power Destructitron X

I’m Jason Firth.

This post is meant to test embedding youtube videos into a post. This video is relevant to the blog because it is my term project from college: The Power Destructitron X.

The story of this surprisingly complicated project has two completely different morals. I think which one you decide on depends on your attitude.

As part of the instrumentation program, everyone has to take part in a term project. Each term project had a certain difficulty, tailored for a certain number of people working on the project. One guy was building a weather station. Another group was building a heat tester. Yet another was building an XY table.

The project I ended up being given was to create a controller to very precisely control a rotary table. I had a rotary encoder, and a stepper motor and stepper motor controller, and an inductive proximity switch. The basic theory was quite simple: Find a home position, determine the number of stepper motor counts that reached 100%, and control the number of counts, while paying attention to the binary encoder. I was going to do all the control in a modicon momentum PLC, and use Wonderware to display the data.

Well, I sort of jumped the gun. All the parts fit together beautifully, the programming was really easy, and I was basically done the assignment on the first day.

When I showed Mr. Shirtliffe, the teacher in charge of the instrumentation engineering technology program there for 30 years at that point that I had completed the project, He seemed to get pretty excited. He stared picking up random parts — a robotic hand here, a piece of an old laser printer there, a brutal looking 24vdc motor, and he gave me a new task: To build a “pick and place robot”.

Well, the project that was originally a difficulty level of 1, just became a difficulty level of 11. I went from having some nice low voltage, low current stuff, to having a huge variety of devices. There was suddenly now air, high current DC, AC, low current DC, I even ended up building some motor controllers from scratch…and I had to find some way to put them all together in a way that would somehow move a block around.

This isn’t hyperbole either; I was always in the classroom at 8am, but for weeks on end I’d stay in the lab until right before the last city bus that would take me home for the night. It was a huge amount of learning, research, work, and rework.

This video shows what I ended up with. Obviously this was before I had developed any real trade skills, but I’m still proud of the fact that I was able to somehow make a thing (no matter how contrived) out of these completely random parts.

(and no, this is probably not what I’d build today with an extra 8 years of design and field experience under my belt.)

As for the two different morals, it depends on your point of view: On one hand, there’s the saying that “the nail that sticks up gets hammered down”. That’s a perfectly legitimate way of looking at things: I would have gotten just as good of a mark if I’d kept my head down and pretended to be working on this thing that was already working, after all. However; I think of it this way: Instead of simply doing a fairly simple project that wouldn’t teach me that much, I got a chance to really stretch my legs, and learn first-hand the best way about a bunch of different controls.

Thanks for reading!

Categories
Site News

The Beginning

I’m Jason Firth.

Welcome to the first entry of my instrumentation, automation, and control blog!

This is something I’ve been wanting to start for a while.

One reason I’ve wanted that is the disconnectedness that I percieve within instrumentation, automation, and control. There seems to be a void between forum posts, and really dense academic literature.

Of course, there’s a lot we can’t talk about: Proprietary control technology owned by our employers and such, but I’m not talking about that. It seems like a lot of the fundamentals don’t get talked about, and it’s to our detriment: Because control professionals are virtually invisible, there are many people who assume there are no real control professionals. Lots of people see the neat PLC things, and assume there’s a weekend course you can take to become the expert. I think that’s a disservice to everyone.

So I’m going to talk a bit about different control topics — from fundamentals, to my personal opinions on different instrumentation, control, and automation devices, to trying to wrap my mind around some of the dense academic stuff I read every month.

One thing: The emphasis is on “personal opinion”. Everything I write is my own personal opinion, and nothing should be taken as the opinion of any of my past, present, or future employers.

Thanks for reading!